Fixed point iterations for Prešić-Kannan nonexpansive mappings in product convex metric spaces
نویسندگان
چکیده
منابع مشابه
On Fixed Point Theorems of Nonexpansive Mappings in Product Spaces
We prove some fixed point theorems for nonexpansive selfand non-self-mappings in product spaces; in particular, we provide a constructive proof of a result of Kirk and Martinez and a partial answer to a question of Khamsi. Our proofs are elementary in the sense that we do not use any universal (or ultra) nets.
متن کاملFIXED POINT THEOREM OF KANNAN-TYPE MAPPINGS IN GENERALIZED FUZZY METRIC SPACES
Binayak et al in [1] proved a fixed point of generalized Kannan type-mappings in generalized Menger spaces. In this paper we extend gen- eralized Kannan-type mappings in generalized fuzzy metric spaces. Then we prove a fixed point theorem of this kind of mapping in generalized fuzzy metric spaces. Finally we present an example of our main result.
متن کاملIshikawa Iterations for Equilibrium and Fixed Point Problems for Nonexpansive Mappings in Hilbert Spaces
In this paper, we introduce an iterative scheme Ishikawa-type for finding a common element of the set EP (G) of the equilibrium points of a bifunction G and the set Fix(T ) of fixed points of a nonexpansive mapping T in a Hilbert space H. We prove that the method converges strongly to an element z ∈ Fix(T ) T EP (G) which is the unique solution of the variational inequality 〈(A− γf)z, x− z〉 ≥ 0...
متن کاملOn Kannan Fixed Point Principle in Generalized Metric Spaces
The concept of a generalized metric space, where the triangle inequality has been replaced by a more general one involving four points, has been recently introduced by Branciari. Subsequently, some classical metric fixed point theorems have been transferred to such a space. The aim of this note is to show that Kannan’s fixed point theorem in a generalized metric space is a consequence of the Ba...
متن کاملFixed Point Iterations of a Pair of Hemirelatively Nonexpansive Mappings
where 〈·, ·〉 denotes the generalized duality pairing. A Banach space E is said to be strictly convex if ‖ x y /2‖ < 1 for all x, y ∈ E with ‖x‖ ‖y‖ 1 and x / y. It is said to be uniformly convex if limn→∞‖xn − yn‖ 0 for any two sequences {xn} and {yn} in E such that ‖xn‖ ‖yn‖ 1 and limn→∞‖ xn yn /2‖ 1. Let UE {x ∈ E : ‖x‖ 1} be the unit sphere of E. Then the Banach space E is said to be smooth ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Universitatis Sapientiae, Mathematica
سال: 2018
ISSN: 2066-7752
DOI: 10.2478/ausm-2018-0005